Automatic RF MESFET Amplifier
Drain-Current Controllers
For a GATE_ voltage ALARM condition, GATE_ remains
clamped and ALM_CLMP_ 10 mode functions the same
as 11 mode. This exception breaks the feedback loop
that would have otherwise been created by sampling the
GATE_ voltage and then clamping that same voltage.
? ALM_CLMP1/ALM_CLMP0 = 11
This mode provides semi-automatic clamping. Prior to
an ALARM condition, the GATE_ voltage is controlled
by the sense voltage (MAX11014) or the DAC setting
(MAX11015). When an ALARM condition is triggered,
the GATE_ voltage clamps to ACLAMP_. The clamp
holds the GATE_ output in this condition, even if sub-
sequent ADC samples are taken and all ALARM
channels are cleared. To release the clamp, rewrite
the ALM_CLMP1/ALM_CLMP0 bits to 11 or 01.
OPSAFE Inputs
Set the OPSAFE1 and OPSAFE2 inputs high to clamp
the GATE1 and GATE2 outputs to the externally applied
voltage at ACLAMP1 and ACLAMP2, respectively.
OPSAFE1/OPSAFE2 override any software commands.
The ALM_CLMP1/ALM_CLMP0 bits in the hardware
ALARM configuration register also provide clamping
functionality.
SRAM LUTs
The MAX11014/MAX11015 implement four independent
lookup tables (LUTs). The LUTs are temperature based
(TLUT) and numeric based (KLUT). Channel 1 and
channel 2 each have a separate T and KLUT. Each LUT
can store up to 48 separate data words. See Figure 28.
In addition to storing data values, the LUT memory also
contains configuration registers that specify LUT size,
hysteresis bit value, and step size. Table 28 details how
the LUTs are configured in memory.
Write data to the LUTs with the following sequence:
1) Write to the LUT address register to set the base
address for the first data word (the LUTWORD bits
are don’t care in LUT writes).
2) Write to the LUT data register to write data values.
Each time the LUT data register is written, the
address in the LUT memory space is automatically
incremented.
Read data from the LUTs with the following sequence:
1) Write to the LUT address register to set the base
address for the first data word and the number of
LUT words to be read.
2) Issue a single read command of the LUT data regis-
ter. The MAX11014/MAX11015 then fill the FIFO
with the requested LUT data, starting with the data
at the LUTADD base address and incrementing
until reaching either the top of memory or the num-
ber of locations based on the LUTWORD code.
3) Read each of the 16-bit LUT data words (including
the 3- or 4-bit channel tag) from the FIFO at DOUT
in SPI mode and SDA in I 2 C mode.
Begin a LUT write or read command by writing to the
LUT address register. See Table 23. This register sets
the LUT base address and the number of LUT locations
to be read in a subsequent read of the LUT data regis-
ter. Set the command byte to 7Ah to write to the LUT
address register. Set the LUTWORD bits, D15–D8, to
the number of LUT words (1 to 48) to be output during
a LUT read operation. Set the LUTADD bits, D7–D0, to
point to the base address of the LUT data. The
TLUT1-0 to TLUT1-47 (channel 1) values are stored at
addresses 00h to 2Fh. The TLUT2-0 to TLUT2-47
(channel 2) values are stored at addresses 30h to 5Fh.
The KLUT1-0 to KLUT1-47 (channel 1) values are
stored at addresses 60h to 8Fh. The KLUT2-0 to
KLUT2-47 (channel 2) values are stored at addresses
90h to BFh.
The LUTs are defined by setting the following parameters:
1) The table’s base value
2) The step size of the table (how far apart the
entries are)
3) The hysteresis threshold size
4) The size of the LUT (the number of entries)
LUT Configuration
Write a LUT configuration sequence to initialize the step
size, hysteresis threshold size, and size of the LUT.
Determine the respective channel ’s temperature or
KLUT configuration with the following sequence:
1) Set the LUTADD bits in the LUT address register to
C0h (TLUT1), C1h (TLUT2), C2h (KLUT1) or C3h
(KLUT2). See Table 28a.
2) Write to the LUT data register (LUTDAT15–LUTDAT0)
to initialize the step size, hysteresis threshold size,
and size of the LUT. See Table 28b.
58
______________________________________________________________________________________
相关PDF资料
MAX12000ETB+T IC AMP GPS FRONT 1575MHZ 10TDFN
MAX12005ETM+T IC SATELLITE IF SWITCH 48-TQFN
MAX1385BUTM+ IC RF LDMOS BIAS CNTRLR 48-TQFN
MAX1470EUI+T IC RECEIVER 315MHZ 28-TSSOP
MAX1470EVKIT-315 EVAL KIT FOR MAX1470 315MHZ
MAX1471EVKIT-315 EVAL KIT FOR MAX1471 315MHZ
MAX1472EVKIT-433# EVAL KIT MAX1472
MAX1473EVKIT-433 EVAL KIT MAX1473
相关代理商/技术参数
MAX11014EVKIT+ 制造商:Maxim Integrated Products 功能描述:EVALUATION KIT FOR THE MAX11014 - Bulk
MAX11015 功能描述:射频放大器 RoHS:否 制造商:Skyworks Solutions, Inc. 类型:Low Noise Amplifier 工作频率:2.3 GHz to 2.8 GHz P1dB:18.5 dBm 输出截获点:37.5 dBm 功率增益类型:32 dB 噪声系数:0.85 dB 工作电源电压:5 V 电源电流:125 mA 测试频率:2.6 GHz 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:QFN-16 封装:Reel
MAX11015BGTM 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Automatic RF MESFET Amplifier Drain-Current Controllers
MAX11015BGTM+ 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Automatic RF MESFET Amplifier Drain-Current Controllers
MAX11017 功能描述:模数转换器 - ADC RoHS:否 制造商:Texas Instruments 通道数量:2 结构:Sigma-Delta 转换速率:125 SPs to 8 KSPs 分辨率:24 bit 输入类型:Differential 信噪比:107 dB 接口类型:SPI 工作电源电压:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-32
MAX11017ATL+ 功能描述:模数转换器 - ADC RoHS:否 制造商:Texas Instruments 通道数量:2 结构:Sigma-Delta 转换速率:125 SPs to 8 KSPs 分辨率:24 bit 输入类型:Differential 信噪比:107 dB 接口类型:SPI 工作电源电压:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-32
MAX11017ETL+ 功能描述:模数转换器 - ADC RoHS:否 制造商:Texas Instruments 通道数量:2 结构:Sigma-Delta 转换速率:125 SPs to 8 KSPs 分辨率:24 bit 输入类型:Differential 信噪比:107 dB 接口类型:SPI 工作电源电压:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-32
MAX11019 功能描述:模数转换器 - ADC RoHS:否 制造商:Texas Instruments 通道数量:2 结构:Sigma-Delta 转换速率:125 SPs to 8 KSPs 分辨率:24 bit 输入类型:Differential 信噪比:107 dB 接口类型:SPI 工作电源电压:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-32